Forensic Dental Identification

Forensic Dentistry

1.1 Introduction

Identification of an individual can be confirmed by several different methods.
These include visual identification, personal effects, tattoos, scars, anatomical structures, medical devices, and implants, as well as fingerprint, DNA, and dental comparisons. Molina subdivides the methods of identification as visual, circumstantial, external characteristics, internal characteristics, radiographs, and anthropology, and notes that DNA, fingerprint, and dental comparisons are considered the scientific methods of identification.

Although visual methods of identification are commonly used, they should be used with caution. “Visual identification is one of the least reliable forms of identification and can be fraught with error”. Facial and other characteristics can change due to trauma, swelling, fragmentation, and decomposition. Certainly hair color, skin color, and other physical descriptors can be useful, but should never be used alone to confirm identification when disfiguring has occurred. In such cases, most medical examiners will not attempt a visual ID since it may create significant emotional trauma to family members.
This can also lead to misidentification of the individual.
Case Report: Misidentification/Delayed Identification
“On April 26, 2006 Whitney Cerak, Laura Van Ryn and seven other people were involved in a car accident in Indiana. Five people perished in the accident.”
Cerak’s parents were informed by authorities that their daughter Whitney had died in the accident. The Van Ryn family anxiously waited at what they thought was Laura’s bedside. After five weeks of intensive care it became obvious that the girl in the hospital was not Laura Van Ryn. Whitney Cerak was alive and the Cerak family had unknowingly buried Laura Van Ryn after a closed-casket funeral that drew several thousand mourners.
According to the local coroner, the mistake occurred at the scene. Personal belongings were strewn throughout the crash site and both girls had similar facial features, blonde hair, and similar body weight. At the accident scene, Laura Van Ryn’s ID had been associated with the individual transported to the hospital.
The hospitalized girl had considerable facial trauma and swelling. Van Ryn family members were unable to recognize the person they thought was Laura and did not realize the mix-up until weeks after the crash. They were so emotionally involved that they had no reason to doubt the identity. No scientific identification techniques were utilized. DNA, fingerprint, or dental record comparison was not employed to confirm the identity of any of those involved in the crash. After the error became obvious, dental record comparisons confirmed the identities of both girls. The Van Ryn and Cerak families, including Whitney Cerak, corroborated on a 2008 book chronicling the events and the effects those events had on the families.

1.1.1 Fingerprints

Fingerprint identification is a dependable and efficient forensic identification technique, but it is sometimes impossible to record postmortem fingerprints from decomposed or burned bodies. A body that remains immersed in fresh water can decompose rapidly, depending on the water temperature, and may preclude the recording of postmortem fingerprints. Of course, it is not possible to record fingerprints from skeletonized decedents.
For fingerprints to be a useful identification tool in a specific case, the person in question must have antemortem fingerprints on file. There is still a significant segment of the U.S. population for whom there are no fingerprint records. Sources estimate that about one out of every six people in this country has a fingerprint record on file in the Integrated Automated Fingerprint Identification System (IAFIS). Conversely, five of every six have no fingerprints on file.
For those individuals fingerprint analysis and comparison will be nonproductive. Postmortem fingerprints are collected whenever possible, but comparison depends on the existence of prior fingerprint records.

1.1.2 Personal Items

Personal effects such as driver’s licenses, photographs, car keys, or monogrammed items are often useful clues in researching a decedent’s identity.
These should be used with caution, however, and should never be the sole determinant in the identification process. For example, after a fiery motor vehicle fatality, determining that the vehicle is registered to the same person named on a driver’s license found at the scene can be a very valuable clue.
There are, however, documented cases where such deaths have been staged for various fraudulent purposes. Names on items of clothing are clues but not identification. After the World Trade Center attacks in 2001, firefighters who perished were found to be wearing other firefighters’ turnout coats.
Identification errors could have been made from attempting to make positive identifications using personal effects alone.

1.1.3 Tattoos and Scars

Tattoos and scars provide clues for forensic identification. Scars may be from previous trauma or surgical intervention and can be further investigated by the pathologist. Tattoos, if sufficiently unique, can be used as an identifier of an individual or may indicate that individual belonged to a
particular group or gang. See Chapters 5 and 11 for information concerning tattoos and scars and for methods for better imaging this evidence.

1.1.4 DNA and DNA Evidence

Analysis of DNA evidence for identifications has become a widely used forensic technique and is considered by many to be the gold standard. The ability of forensic investigators to obtain antemortem DNA samples even after the death of an individual is a distinct advantage for DNA analysis. A swab from a close relative, stored blood, or material from the decedent’s hairbrush
or toothbrush may provide adequate comparison material. DNA profiles of decedents can be compared to various databases. There are limitations for all forms of identification, and for DNA the major limitations are the time required and the costs involved, which may rapidly exceed the limits of already challenged medical examiner and coroner budgets. DNA analysis has also become a valuable tool used in conjunction with bitemark identification analysis (see Chapter 14). By providing efficient, accurate, and cost-effective human identification, forensic dentists play important roles in death investigation.

1.2 History of Dental Identification

The oldest known example of the identification of an individual confirmed by teeth was reported by the Roman historian Cassius Dio (c. 165-c. 235 A.D.).
Aggripina the Younger, wife of Emperor Cassius and mother of future Emperor Nero, contracted for the killing of a perceived rival, Lollia Paulina.
In his account Dio reported, “She did not recognize the woman’s head when it was brought to her; she opened the mouth with her own hand and inspected the teeth, which had certain peculiarities.”

1.3 Philosophy and Legal Basis for Dental Identification

The confirmation of the decedent’s identity serves several important purposes.
Bringing closure to a tragic or unexpected event will often give some peace and closure to the immediate family members in their time of grief.
The anguish of not knowing is difficult for families. Although confirmation of death may be terrible, it ultimately leads to the possibility of resolution of a difficult time for family members.
For the legal settlement of estates, a death certificate is usually required.
A death certificate cannot be issued without confirmation of identity.
Payment of life insurance policy benefits also requires verification of death.
The cause and manner of death may be very important items of information for life insurance companies and to the decedent’s family. Increased benefits for accidental death or clauses precluding payment for deaths from suicide, acts of war, or engaging in dangerous activities often mean that these cases are decided in courts of law.
In multiple fatality incidents, identification of decedents is often difficult and commingling of remains may occur. In these situations great care must be taken to correlate all body fragments to the appropriate decedent. Dental identification may provide an identified fragment to which other unknown fragments can be compared. Even if no antemortem DNA profile is available for that individual, fragments with the same DNA profile can be associated.
The combined use of DNA and dental comparison can help to ensure that all possible fragments are associated and returned to families for proper burial.
See Chapter 16 for additional information concerning the legal aspects of forensic dental identification.

1.4 Steps in Dental Identification

1.4.1 Postmortem Examination

The durability of the human dentition, including the ability of teeth to survive decomposition and withstand drastic temperature changes, makes dental evidence comparison one of the most dependable and reliable methods of identification. The mechanism of this process involves comparing features of an unknown specimen to those of a known individual. The durability and longevity of human teeth make this process possible.
An accurate and detailed evaluation of the postmortem specimen will afford the best possibility of successfully comparing that information to antemortem information. Attention to detail at the postmortem examination precludes errors that can lead to nonidentification and the need to repeat steps to get an accurate postmortem record. “Document, document, document” should be the mantra of examiners of forensic materials. By following a step-wise examination checklist that includes photography, dental radiography, and dental charting, a forensic odontologist or forensic dental team can create consistently accurate postmortem dental records.
Photography of a specimen can provide the ability to view specific features without having to revisit the morgue. These photographs should be taken to allow orientation as well as closeup photographs of the dental structures. This photo documentation can prove extremely valuable in cases where the handling of the specimen could lead to further degradation of fragile remains. This is often the case with dental structures that have become desiccated or carbonized from extreme heat. Using macro or closeup photographs of the dentition can also provide additional information that may lead to identification and is discussed in more detail in the comparison section of this chapter.
The goal of the postmortem dental examination is to locate, identify, and document anatomical structures, dental restorations, and dental appliances that will aid the comparison process. The more information documented in this examination, the greater the likelihood of successful comparison to an antemortem record. Depending on the condition of the remains, this task can be simple or complex. In a fully intact body with no injuries to the facial structures, the ability to locate specific dental structures will be simple in comparison to cases in which individuals have been subjected to explosions, rapid deceleration injuries, extreme heat, or crushing forces.

In situations involving specimens that are not readily identifiable as human facial structure, dental remains can be located with the assistance of large-format radiographs. This radiograph facilitates locating radiopaque structures that can assist in locating dental structures within the specimen or body bag. Once these items are identified on this large radiograph, the examiner can use this image to assist in locating structures of interest, including teeth, dental prosthetic items, and bony structures of the mandible or maxilla.
Once all available dental material is found, forensic odontologists should take dental radiographs in an effort to reproduce similar exposures and angulations anticipated in the antemortem dental record. Since the source and type of radiographs may be unknown at this point in the process, it is recommended that a full series of radiographs be obtained. This series of films should include posterior and anterior periapical radiographs and bitewing radiographs. If the specimen is fragmented, the radiographer should consider the necessary film placement and tube head angulations to replicate those normally obtained in a clinical setting. For convenience in image capturing the examiner may also find it helpful to radiograph the maxillary and mandibular teeth separately in bitewing radiograph projections. If the examiner is taking images of fragmented remains, care should be taken to ensure that consistent projection geometry is maintained by placing the film or digital sensor on the lingual aspect of the specimen. Again, carefully following protocol is important, as the examiner may not have a second chance to complete the radiographic examination. Attention to detail is necessary, and any images that are not adequate should be retaken so complete radiographic information is available for comparison to antemortem data.
If digital radiography is available, the examiner will find the retake of images to be straightforward since the need to process films is eliminated and the image is instantly viewable.
The postmortem record, whether digital or paper, should be recorded in a form that will assist in the comparison process. It should be a format that records and displays the relevant features of the dentition to demonstrate missing teeth and the restored surfaces.

1.4.2 Antemortem Examination

When an investigating agency determines that a dental identification may be required, the agency attempts to locate and obtain the dental record. This action, securing antemortem dental records, is a crucial step in dental identification, and the quality of these records is totally dependent on practicing dentists keeping accurate records of the dental status of their patients. Most forensic dentists consider this reconstruction of the antemortem record the
most challenging and time-consuming step in dental identification.
Dentists are required by law, in most jurisdictions, to maintain their patients’ original records. This places a dental practitioner in an uncomfortable position when asked to release an original dental record for comparison and possible dental identification. Dentists are almost always anxious to help but concerned about the proper management of their patients’ health records.
In addition to state regulations regarding record keeping, since 2003 the Health Insurance Portability and Accountability Act (HIPAA) and the accompanying and ironically named Administration Simplification (AS) provisions address the security and privacy of health data, particularly protected health information (PHI). HIPAA and most state dental regulations provide exemptions for the release of original records for the purpose of identifying the dead.
Investigators must be educated to explain the rules and politely demand that dentists or the dental office staff provide the original dental record, including financial ledger, written records, health and dental history forms, and all original radiographs. With the current ability to digitize a
dental chart, the duplication of an original record can be relatively easily performed. Duplication of the record in this fashion provides the dental office and the forensic investigator with a digital copy of the record and the amount of time that the treating office is without the original record is minimized.
Also, after the record is duplicated and the original record is returned to the dental office, a phone consultation can be performed with the treating dentist to allow for clarification of any of the notes or charting peculiarities. During the process of antemortem material collection, the practitioner should also be asked if there are dental models or appliances that may be useful in the identification process.
Meticulous evaluation of the original materials facilitates the creation of an accurate record of the status of the patient’s mouth at the time of the last dental visit. It is important to review all written records and radiographs and to give special attention to the most recent procedural notes, patient ledgers, and radiographs. Dental treatment is regularly performed after the latest radiographic and clinical examination.
The antemortem forensic record should be recorded in a format that accurately portrays the latest known status of that patient’s dental status.

1.4.3 Comparison

After the postmortem and antemortem records are completed, the comparison process can proceed. Although this is commonly done manually for individual identifications, in multiple fatality incidents it is likely that a computer program will be used for the search and comparison of the antemortem and postmortem records. WinID3© is a computer program commonly used in North America that will assist the forensic dentist or forensic investigator to establish and maintain antemortem and postmortem databases.

WinID was developed by Dr. Jim McGivney as an expanded and enhanced Windows version of the earlier DOS-based CAPMI program developed by Lorton et al.

WinID3 employs several modes of searching the database for matching records. This allows the comparison of a record (antemortem or postmortem) against all opposing (postmortem or antemortem) records in the database, with the resulting possible matches displayed and linked for further visual comparison. The search results are displayed in five separate tables as most dental hits, least dental mismatches, most restoration hits, most identifier matches, and fuzzy dental logic. After selecting a record for comparison, the examiner is then able to view the specifics of each record and view the case identifiers, the odontogram, and an associated graphic/radiograph of the cases in a side-by-side fashion. WinID3 has been paired with digital
intraoral radiographic software to produce an efficient and effective system for multiple fatality incidents that allows the use of the more sophisticated image management software features.
Whether the initial comparisons are made manually or with the aid of a computer, a visual comparison of the records should be made by the forensic odontologist. The terminology for conclusions resulting from the comparison and correlation process should follow the guidelines of the American Board of Forensic Odontology (ABFO).

Information regarding guidelines for body identification and missing/unidentified persons can be found on the ABFO website at and in the American Board of Forensic Odontology Diplomates Reference Manual.
Forensic dentists may assist medical examiners and coroners by comparing the dentition of decedents with antemortem photographs showing the teeth. The technique was suggested by Dr. R. Souviron, who has long used what he calls smiley-face photographs to compare to unidentified bodies. The grin line method (a smile may not show teeth) using Adobe® Photoshop® has been developed, evaluated, and utilized. The method and its uses have been presented in the Odontology Section of the American Academy of Forensic Sciences.
This method is not a stand-alone method of identification but is to be used in conjunction with other information to assist medical examiners and coroners to establish identification.

1.5 Technological and Scientific Advances

The advances in dental technology and materials used in clinical practice have led to many changes in the delivery of patient care. These include computer hardware and software, intraoral photography and videography, digital radiography, intraoral laser technology, dental implants, high-strength porcelains, advances in bonding agents, and continued changes in dental esthetic resins, to name a few. These same advances in dental technology can also be useful in dental identification.
Flint et al. conducted a pilot study to determine the ability of a computer program to compare dental radiographs as a method for dental identification.
This program enables the comparison of radiographs taken from different projection geometries. In their study, longitudinal radiographs of individuals were used to test the ability of the program to correctly identify images of the same individuals. Following this aspect of the study, clinical radiographs of patients were used to further test the ability to correctly identify radiographs from the same individual. Through their study, the examiners found different threshold levels of the program to properly identify radiographs of the same patient when evaluating different anatomical areas of the mouth. The authors show this method of intraoral image comparison to be both objective and reliable.

As stated earlier in this chapter, there is great demand for esthetic restorations in today’s dental environment. The frequent placement of esthetic resin restorations in anterior and posterior teeth can further complicate the ability to make a positive dental identification due to the possibility of the forensic examiner being unable to identify a resin restoration clinically or radiographically. Pretty et al. used quantitative light-induced fluorescence (QLF) in the identification of dental composite resin in extracted teeth. They further explored some of the difficulties encountered in the post mortem examinations that include tooth-colored restorations. In Pretty’s study, extracted and previously unrestored teeth were utilized. Resin restorations were placed in half of the tooth specimens while the other teeth remained unrestored. Digital photographs and QLF images were taken of the specimens under both wet and dry conditions. Dental examiners were asked to evaluate the images to determine if teeth were restored or unrestored. The results of the study showed a significant improvement in the ability of the examiners to identify restored surfaces when QLF was employed.

Hermanson et al. have demonstrated the usefulness of UV light in the visualization of dental resins. The evaluation using visible light from the UV spectrum is a qualitative method that can be used to locate esthetic resin fillings or pit and fissure sealants that might otherwise go undetected on clinical examination.

Bush et al. investigated the ability to identify specific dental restorative resins by their formulation. Manufacturers’ formulations of dental resins differ with respect to filler particle size and elemental composition. Through the use of scanning electron microscopy and energy-dispersive x-ray spectroscopy, this study demonstrated that the makeup of dental resin materials is potentially useful as an aid in dental identification cases. Through the evaluation of several dental resins, they were able to determine that even under conditions of extreme heat, the element composition of these products was relatively unaltered. The data from this study were used to initiate the creation of a database for use in identification of resin restorations in teeth through the elemental analysis of their composition, and further reinforces the need for the dental practitioner to maintain thorough written records regarding specific materials used in tooth restoration.

The same team of researchers conducted an additional study to demonstrate the utility of dental resin identification and the creation of a dental resin database using portable x-ray fluorescence (XRF). This study again used the evaluation of the elemental composition of dental restorative resins and their ability to withstand high-heat conditions. Using XRF, the examiners examined resins placed in cadavers both prior to and after the placement of the cadavers in a crematorium. In both situations the study demonstrated the ability to identify the different resins by brand. This study further reinforces the usefulness of forensic dental science in its ability to aid in the identification of remains even after exposure to extreme conditions.

These types of examinations can be expected to become more necessary and more useful as the placement of esthetic resins continues to expand.
If esthetic dentists do their jobs well, visual and radiographic detection of these materials may present a challenge to forensic dentists.
Another dental material that is not generally considered beyond its radiographic appearance in a postmortem dental examination is root canal filling materials.
Bonavilla et al. examined the usefulness of these type of materials in identification using scanning electron microscopy and energy-dispersive x-ray spectroscopy (SEM/EDS), as listed in the initial resin study above. This study reports that 40 million endodontic fillings are completed in the United States annually. This provides a large possibility that postmortem examinations will result in the discovery of this type of previous dental treatment. In the same fashion as the previous study, these materials were evaluated both pre- and postcremation. It may appear that this group of researchers has pyromaniacal tendencies, but this research has practical and useful applications.
The most difficult dental identifications may be those that involve severely burned remains and, in the most extreme cases, cremains. The researchers noted that endodontic obturation materials, gutta percha, silver points, root canal sealers, and endodontic files were identifiable following exposure to high temperatures through the analysis of their elemental composition.

These initial studies allowed the development of a database of dental resins. The next step was to develop a means by which the elemental analysis and brand determination could be determined in the field with a portable unit.
This study combined the laboratory use of scanning electron microscopy and energy-dispersive x-ray spectroscopy (SEM/EDS) with the Spectral Library Identification and Classification Explorer software (SLICE). SLICE is an application that archives, examines, and compares x-ray spectra of the EDS. Blind tests were performed in the assessment of dental resins in an effort to determine the resin brand. The application of this technology in a dental application was novel but proved to be successful following the creation of the dental resin database for this type of dental material. Research of this kind continues to expand the possibilities of contributions that can be made in investigations involving dental remains.

Three-dimensional (3D) radiographic imaging in dentistry has greatly increased since the publication of the first edition of Forensic Dentistry.
Radiographic 3D imaging is more fully discussed in Chapter 10. However, other 3D imaging advances are worthy of mention because of their potential application to forensic odontology. Improvements in computer technologies have led to the development of hardware and software that can create 3D models following the scanning of objects. The objects can be a tooth, several teeth, or a complete dental model. A scanner developed by 3M, the Lava
TM Chairside Oral Scanner, and other intraoral image capture systems of this type are used to create accurate 3D models to be used for the indirect fabrication of fixed dental prosthetics. It is not difficult to envision that these same components or their derivatives could be utilized to make 3D scans of postmortem cases to compare to archived 3D antemortem scans, leading to positive dental identifications. This same technology may become useful in bitemark analysis.
These and other advances in dental and forensic technologies coupled with optimal clinical practices that stress meticulous record keeping, including recording the specific dental materials used in patient care, will become important tools for forensic dentists, facilitating identifications and the return of loved ones to their families.

1.6 Ten Tips and Cautions for Dental Identification

1. You cannot unfill a tooth. As obvious as this may seem, if, in a postmortem case, a tooth is unrestored, all antemortem records showing a restoration in that same tooth can be eliminated. A restoration may have been placed after the most recent antemortem record, but not the opposite-teeth do not heal. Consideration must be given to errors in antemortem charting.
2. Extracted teeth cannot grow back. If an antemortem radiograph demonstrates that a tooth is missing and that tooth is present in a postmortem radiograph, the forensic odontologist can exclude that postmortem record.
3. A body without an antemortem dental record cannot be identified by dental means. As in all methods of identification, postmortem information must be compared to a known individual’s antemortem information. Not all unidentified bodies will ultimately be identified.
4. Antemortem records without a body = no ID. Hundreds of dental records exist in missing persons databases, including the NCIC database in Washington, D.C. Until the body of a specific individual is found and the data compared, no identification is possible.
5. The quality of the antemortem dental record is critical to dental identification. Charting errors happen! As long as records are kept by humans there will be human error. Dr. Jim McGivney, creator of WinID, characterizes the most common charting errors as Flips, Flops, and Slides. Flips occur when dentists or assistants erroneously record treatments to the contralateral tooth, the tooth on the other side of the arch, i.e., 19 to 30 (36 to 46 FDI [Fédération Dentaire Internationale]) or 13 to 4 (25 to 15 FDI). Flops occur when restored surface notations are transposed, i.e., MO instead of DO or OF in place of OL. Slides occur, most commonly, when teeth have been lost and other teeth drift into their spaces. For instance, tooth 15 (27 FDI) has drifted mesially and is erroneously recorded as tooth 14 (26 FDI).
With the increased use of digital radiography, the incidence of lost radiographs should decrease. Digital dental software programs internally record the date an image is entered into the file. That information is permanently attached to the image. Dentists are encouraged to keep complete and accurate dental records to facilitate dental identification and to protect the dentist in case of legal actions.
6. The older the antemortem record, the higher the potential for inconsistencies. When examining antemortem radiographs forensic dentists should remember that additional treatment may have been completed on that patient in the interim period. Ignoring that possibility may lead to recording points of discrepancy that are, in fact, explainable. Every practical attempt should be made to procure the latest available treatment record.
7. Advances in dental material science have changed dental identification methodology. The technological advances in dental resin materials coupled with the increased demand for esthetic restorations have further complicated some forensic comparisons. The use of amalgam filling material is declining and is being replaced with the use of increasingly varied composite resin materials. Dental techniques, including microdentistry and the use of flowable resins, have made the postmortem examination process more complex. The radiopacity of dental resins varies, and some are almost radiolucent. These radiolucent restorations can resemble tooth decay on radiographs. Forensic dentists must inspect restorations during postmortem examinations with a great deal more scrutiny than in the past, when “tooth colored” restorations were usually only seen in anterior teeth. Technological aids for identifying composite resins are discussed above.
8. Things are not always as they appear. The restored surfaces of a tooth may appear more extensive in the postmortem exam than is recorded in an antemortem record for a specific tooth. The forensic dentist that assumes this to be a discrepancy may make the error of forgetting that additional dental treatment to that tooth may have occurred after the latest antemortem record entry. Multisurface amalgam restorations may have been replaced with full crowns by a different dentist. This is a common occurrence in forensic casework. These occurrences can be labeled as “explainable discrepancies” or “logical progressions” and are not necessarily reasons to exclude a record in the comparison process if other overwhelming information indicates that the two records are records of the same individual. When examining the antemortem radiographs, care must be taken to ensure that the x-rays are oriented correctly. If the antemortem x-rays are duplicates and not labeled as L or R and the film dimple location is indeterminable, then the forensic dentist must request additional information from the submitting dentist, most often the original films. Original films should always be acquired and examined since duplicate films are very often incorrectly oriented.
9. One unexplainable discrepancy is more important than many consistencies. Dental evidence is useful for both identification and exclusion. Even if five restorations are consistent among the antemortem and postmortem records, significant doubt must be raised if one unexplained exclusionary item is noted. For example, if the antemortem records show a full crown on a certain tooth and the postmortem record shows an occlusal amalgam on the same tooth, the comparison results in exclusion. One unexplainable discrepancy leads to exclusion.
10. You may only get one chance to get accurate postmortem dental information. Attention to detail in the postmortem examination is mandatory. Once a body is released, it may be buried or cremated before discovery that a record is inadequate or an image is substandard.
Exhumation to recover information that should have been obtained is embarrassing. Attempting to recover the same information from cremains may be impossible.

1.7 Summary

Postmortem dental examinations are sometimes unpleasant but always necessary exercises. The accurate reconstruction of the antemortem record is an equally important phase of the identification process. With careful attention to detail, dental identifications can be completed in a relatively short time period and at a reasonable cost when compared to other means of identification. In some instances, the forensic dentist may find it useful to consider the new technologies available to assist in the comparison process. With advances in this and other forensic identification sciences, new methods will become more commonplace. Through the cooperative efforts of medical examiners, coroners, law enforcement officials, and forensic odontologists, dental comparisons can be efficiently and accurately completed to identify or exclude References
1. Cerak, W. Mistaken identity.
2. Van Ryn, D. 2008. Mistaken identity: Two families, one survivor, unwavering hope. Waterville, ME: Thorndike Press.
3. Fingerprinting.
4. Cassius Dio, C., Earnest, F., Baldwin, H. 1914. Dio’s Roman history. The Loeb classical library. London: W. Heinemann.
5. 45 CFR 164.512(g)(1). Standards for privacy of individually identifiable health information. Final rule. Uses and disclosures for which consent, an authorization, or opportunity to agree or object is not required, uses and disclosures about decedents. 2003.
6. McGivney, J. 1997-2008. WinID3. St. Louis.
7. Lorton, L., Rethman, M., and Friedman, R. 1988. The Computer-Assisted Postmortem Identification (CAPMI) System: A computer-based identification program. J Forensic Sci 33:977-84.
8. ABFO. 2009. Diplomates reference manual.
9. Bollinger, S.A., P.C. Brumit, B.A. Schrader, and D.R. Senn. 2005. Grin line identification using digital imaging and Adobe Photoshop. Paper presented at American Academy of Forensic Sciences, Annual Meeting, F7, New Orleans.
10. Friday, M.F., P.C. Brumit, B.A. Schrader, and D.R. Senn. 2006. Practical application of the grin line identification method. Paper presented at American Academy of Forensic Sciences, Annual Meeting, F6, Seattle.
11. Keiser-Nielsen, S. 1977. Dental identification: Certainty V probability. Forensic Sci 9:87-97.
12. Haub, C. 1998. World population: A major issue for the millennium. Glob Issues 3:17-19.
13. Keiser-Nielsen, S. 1969. [Forensic dentistry]. Zahnarztl Mitt 59:447.
14. Keiser-Nielsen, S. 1974. Dental evidence in the reconstruction of identity. Int J Forensic Dent 2:78-81.
15. Sognnaes, R.F. 1975. Oral biology and forensic science. Annu Meet Am Inst Oral Biol 126-39.
16. Adams, B.J. 2003. The diversity of adult dental patterns in the United States and the implications for personal identification. J Forensic Sci 48:497-503.
17. Steadman, D.W., B.J. Adams, and L.W. Konigsberg. 2006. Statistical basis for positive identification in forensic anthropology. Am J Phys Anthropol 131:15-26.
18. Adams, B.J. 2003. Establishing personal identification based on specific patterns of missing, filled, and unrestored teeth. J Forensic Sci 48:487-96.
19. Joint POW-MIA Accounting Command, Central Identification Laboratory. Odontosearch.
20. American Dental Association.
21. American Board of Forensic Odontology.
22. Flint, D.J., et al. 2009. Computer-aided dental identification: An objective method for assessment of radiographic image similarity. J Forensic Sci 54:177-84.
23. Pretty, I.A., et al. 2002. The use of quantitative light-induced fluorescence (QLF) to identify composite restorations in forensic examinations. J Forensic Sci 47:831-36.


Views: 46723 | Comments: 16 Send reply

Send reply


Pleas enter the code on picture:
Enter this code 

Articles for theme “Forensic Dentistry”:

Forensic dentistry
1.1 “Forensic anthropology is the application of the science of physical anthropology to the legal process.” Forensic anthropologists provide services to a large community, which includes a variety of law enforcement agencies, from local to federal or even international jurisdictions, medical examiners, coroners, and others charged with the responsibility for the investigation of death. In these endeavors forensic anthropologists cooperate with odontologists, pathologists, radiologists, and other forensic specialists who deal routinely with human remains.

Forensic Dentistry
 part 1   1.7 DNA DatabasesOver the past two decades, forensic odontologists have witnessed a series of computer software programs that provide the ability to store highly detailed antemortem and postmortem records. The Computer-Assisted Postmortem Identification System (CAPMI) and Wind-ID are memorable examples, as is the 2004 version of the National Crime Information Center (NCIC) that accommodates more than just dental fields for missing and unidentified remains.The International Criminal Police Organization (INTERPOL) contracts with PlassData in Denmark to administer DVI System International, which is a similar database application that stores dental and other identification data, including DNA profiles, for use in disaster victim identification responses worldwide.

Forensic dentistry
1.1 IntroductionThere are few scientific approaches to human identification that are more effective than a well-trained forensic dentist armed with a set of high-quality dental records and radiographs. Fingerprinting is probably the only other technique used with greater frequency, but as we know, the soft tissue of the extremities does not resist the ravages of time and environment like the enamel and dentin of human teeth. So, in terms of rapidity, degree of certainty, cost-fectiveness, and applicability to a wide range of intact, decomposing, or skeletonized remains, forensic odontology has been the identification method of choice.

Forensic dentistry
  1.1 IntroductionFingerprints have been the gold standard for personal identification within the forensic community for more than one hundred years. The science of fingerprint identification has evolved over time from the early use of finger prints to mark business transactions in ancient Babylonia to their use today as core technology in biometric security devices and as scientific vidence in courts of law throughout the world. Fingerprints, along with forensic dental and DNA analysis, are also paramount in the identification of unknown deceased individuals and human remains.

Forensic dentistry
1.1 BackgroundEstablishing the identity of a person may seem like an easy task; the person, or their friends or family, can simply be asked their name. In medicolegal cases, however, there are often reasons why people are either unable to give accurate answers or purposefully give inaccurate ones. In cases of death, a body may also be too disfigured due to trauma to allow for easy identification. This is common in cases of high-velocity crashes (e.g., cars, airplanes), fires, explosions, or decomposed/skeletonized remains.